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S E L F - O S C I L L A T I N G  P R O C E S S  
WITH PERIODIC I N T E N S I T Y  

OF H E A T  E X C H A N G E  

Yu. B. Zudin UDC 536.24 

The limit of the stability o f  a heat carrier f low against small "density wave"-type perturbations is found.  I t  

is shown that stabilization of  f low sets in on increase in the volume heat capacity and also in the ampli tude 

of the heat-transfer coefficient fluctuations. 

When a t empera tu re -dependen t  heat carr ier  flows in a heated channel ,  the manifestation of a specific 

low-frequency instability with respect  to density waves is possible [ 1 ]. This form of instability, associated with the 

effects of interaction and de lay  on lengthwise propagation of the perturbations of flow rate,  density, and pressure,  

is characteristic for two-phase media  [2, 3 ] and for a single-phase fluid in a supercri t ical  region of pressures [4 ]. 

An approximate analyt ical  method of the investigation of stability with respect  to density waves has been 

developed in [5, 6 ]. A flow of hel ium in a supercritical region of pressures was cons idered  for the limiting case of 

infinitely small values of the volume heat  capacity of a wall. In the present work a generalization of the analysis  of 

[5, 6 ] is made taking account of the effect of thermal  conjugation with a wall on the limit of stability. 

Similarly to [5 ], a case is considered in which pressure losses in a lengthwise direction can be neglected 

in comparison with those on the inlet and outlet restrictors.  Th en  the heat car r ie r  flow in a channel is descr ibed 

by one-dimensional  cont inui ty and  energy equations: 

0p+0pu 0 
at Oz = ' (1) 

Oh Oh 
p --~ + p u - - g :  = q~ .  (2) 

It is assumed that the specific volume of the heat  carr ier  depends l inearly on the enthalpy: 

dv 
- -  = a = const (3) 
dh 

For a homogeneous two-phase flow equality (3) is trivial and is satisfied exactly [1 ]; for helium in a 

supercritical region of pressures  it is satisfied approximately  [5, 6 ]. 

The  use of (3) allows one  to eliminate the densi ty  and enthalpy from Eqs. (1) and (2) and reduce them 

to the form 

Ou 
Oz - aqv '  (4) 

Ov Ov 
O---t + U-~z = aqvv" (5) 

It is assumed that  the presence of small perturbat ions of the velocity (flow rate) of a heat carr ier  at the 

inlet to the channel  is the sole per turbing factor [2, 3 ]. The re  are thus 
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a) the condition of the invariability of the sum of pressure drops on the inlet and outlet restrictors: 

APl + AP2 = kz Pl u~ + k2p 2 u~ = const ; (6) 

b) the condition of the constancy of the heat carrier enthalpy at the inlet to the channel (downstream from 

the inlet restrictor): 

h 1 = const. 

Taking account of Eq. (3), the enthalpy boundary condition is replaced by the specific-volume boundary 

condition: 

v I = const. (7) 

The rate, specific volume, and the density of heat sources are represented as the superposition of stationary 

and fluctuating quantities: 

v u = - u + u  , v = v + v  , q v = q v + q  . 

The main flow ~, ~ also must satisfy relations (4) and (5). Subtracting the averaged equations from the 

total ones, we obtain a system of equations for fluctuations of the quantities u ' ,  v ' ,  and q'v: 

au 
- -  = ( 8 )  
Oz a q v  ' 

Ov' _ O v '  , d - ~  

or + u-Ti  + u = aGv + a q # .  

The boundary conditions for Eqs. (8) and (9) follow from boundary conditions (6) and (7): 

I,' 1 - ~ - 0 ,  

( 9 )  

(10) 

i t 

Apl + A P 2 = 0 .  

The solutions of the equations for the fluctuations of the quantities (8), (9) are sought in the form 

( l l )  

u 
- A u ( z )  exp ( ~ 0  = A u ( z )  exp (yO [cos ~ 0  + i sin ~ 0 ] ,  

I) 
- A v ( z )  exp (f~O = A v ( z )  exp (yO [cos (fit) + i sin ~ 0  ]. 

In accordance with the method developed in [7, 8 ] for investigation of the processes of heat exchange with 

periodic intensity, for the considered one-dimensional nonstationary case the fluctuations of the density of heat 

sources and velocity can be connected approximately by the linear relation 

n 

qv u (12) 

where Z is the "coefficient of conjugation," whose specific form is given below. We will introduce the scale of 

frequency: 
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and the dimensionless longitudinal coordinate: 

coO = t lqv  

y = 1 + cooZ/-Ul . 

Here, the quantity a, defined by relation (3), characterizes the "degree of expansion" of the heat carrier along the 
length of the channel: 

v 2 - -  v 1 

a - h2 _ hi . 

The solutions of Eqs. (4) and (5) for the main flow u, v are 

- -  - -  y .  

The complex amplitudes of the fluctuations of velocity and specific volume are described by the equations 

dA u 
dy = ZAu ' (13) 

dAv Q -  1 A u 
-~y + Y Z v + -y  = 0 ,  (14) 

where f2 --- w/co  o is the dimensionless frequency. The boundary conditions for Eqs. (13), (14) follow from Eqs. 

(10), i l l ) :  

Avl = 0 ,  (15) 

2EKAul  + 2Au2 - Av2 = 0 .  (16) 

| tore E = p l / P 2  = v2 / v l ,  K = APl/AP2 = k l / ( E k 2 ) .  
The solutions of Eqs. (13) and (14), which satisfy boundary conditions (15), will have the form 

Au = Cy z ' (17) 

C (_t_1~ X~ (yl-f~ y X ) ,  (18) 
A v =  f2 - 

Determining from Eqs. (17) and (18) the values of the amplitudes Au, Av at the inlet and outlet of the 
channel and substituting them into the boundary condition (16), we eliminate the constant C and obtain the 

following dispersion relation 

2 ( E K A v l  + E x) (f2 + Z - 1) = (1 - Z) ( E I - ~  - E x )  �9 (19) 

Letting ~ =y  + it3 in Eq. (19) and dividing the real and imaginary parts of the resulting equality, we obtain 

a system of two transcendental equations that connect the quantities K, E, y, and/3: 

2 ( y + Z -  1 ) ( E K + E  z) = (1 - Z )  [ E l -  ~ c o s ( f l l n E ) - E  z ] ,  
(20) 

2~ (EK + E z )  = - (1 - Z) E1 - ~ s i n  66 l n E ) .  
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At the given values of the parameters K, E the imaginary part (/3) of the complex frequency f~ corresponds 

to the frequency of periodic fluctuations; the real part (7) of the frequency ~ determines the form of flow, i.e., 

stable or unstable. 

In [5, 6 ], when  analyzing a flow of helium in a supercritical region of pressures,  it was assumed that the 

volume heat capacity of the wall was vanishingly small. Physically this means  that fluctuations of heat  sources are 

equal to zero (q'v = 0) .  
We shall change from the general case (20) to the limiting case [5, 6 ]; for this purpose we equated to zero 

the coefficient of conjugation in equality (12): 

2 (Y - 1) ( E K  + 1) = E 1 - y cos (fl In E) - 1 , 

2fl ( E K  + 1) = - E l - y sin (fl In E ) .  (21) 

In the o ther  limiting case (Z = 1) Eq. (20) yields 

y E ( K +  1 ) = 0 ,  f i E ( K +  1 ) = 0 .  (22) 

The system of equations (22) has a trivial solution: 

y = f l = 0 ,  

which corresponds to the  absolute stability of flow. 

On the o the r  hand ,  the system of equations (21), investigated in [5, 6] ,  determines a cer ta in  limit of 

stability in the coordinates  E(K) .  Thus,  the limiting evaluations show that  with increase in the coefficient of 

conjugation Z the stabil i ty of the flow must increase. 

An approximate  analytical solution of dispersion relation (20) has the following form: 

(3 /2 )  ~ (23) 
/3 = In E ' 

F i n  F 
1 = K F .  (24) 

3/rq~ 

Here  F --- E l -x ,  (i) _- E 7 are  the generalized parameters.  

Equality (23) means  that the frequency of periodic fluctuations of perturbat ions depends only  on the 

parameter  of the expansion of flow between the inlet and outlet restrictors (E--- v 2 / v  I >_ 1). Equality (24) describes 

three  possible situations: a) stability (y < 0; q) < 1); b) instability (Y > 0; qb > I);  c) stability limit (Y --- 0; q> = I). 

From Eq. (24) it follows that in the absence of throttling at the exit (k 2 -- AP2 = 0; K ~ oo) the stabil i ty of 

flow increases unde r  o ther  equal conditions. Of greatest interest for specific applications is the limit of stability, 

whose equation follows from Eq. (24) at q~ = 1: 

F l n  F 
1 = K F .  (25) 

3~ 

Assigning in Eq. (25) the generalized parameter  F -- E l -z ,  it is possible to calculate the pa rame te r  K = 

A~I/Afi  2 at the limit of stability. In the absence of throttling at the exit from the channel  (k 2 = A~2 = 0; K ~ ao), 

relation (25) has the asymptotics: 

F = exp (3z~K) ~ oo . (26) 

From relation (26) it follows that the flow will preserve stability for any (infinitely large in the limit) value of the 

parameter  of flow expansion E. 
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Fig. 1. Solution of the dispersion relation of a l inear  problem of stabili ty for  

K = 0 : /3  region of stabil i ty;  H) region of instabili ty.  

We will consider now solution (24) for  the other limiting case, when there is no throt t l ing at the inlet to 

the channel (k 1 = A~l = K = 0). 

Assuming in Eq. (24) K = 0, we will obtain 

qb _ F tn______~F (27) 
3~ 

Equal i ty  (27) descr ibes  th ree  poss ible  si tuations (Fig. 1): a) stability (1 ___ F < F. ;  0 _< �9 < 1); b) 

instability (F. < F < oo; 1 < �9 < oo); c) limit of stability (F = F . ;  ~o = 1). Here  F .  = 5.52 is the value of the 

parameter  F at the limit of stability. 

Thus ,  analysis of the variants, which are limiting with respect  to the parameter  K, shows that  with increase 

in throttling at the inlet (or with decrease  in throttling at the outlet)  the stability of flow increases and vice versa. 

Below we will consider the practically most  important  case ofK = 0, which is character ized by the smallest stability. 

The sought dependence of the parameter  of flow expansion at the limit of stability for  K = 0 on the coefficient of 

conjugation can be conveniently writ ten using Eq. (25) in the following form: 

n 1 (28) 
E = F .  , n -  1 - Z  

For a fur ther  investigation of re la t ion (28) it is necessary  to obtain an express ion in an explicit form for 

the coefficient of conjugation Z in relat ion (12). For this purpose we shall use the me thod  developed in [7, 8 ] for 

investigating processes of heat  exchange with periodic intensity,  according to which the effect of heat carrier flow 

on the wall is considered to be equivalent  to the assignment to the heat exchange surface of a heat t ransfer  

coefficient, which periodically changes with t ime relative to its mean  value: 

a (0  = ~ (1 + b cos f lO.  (29) 

Then ,  from the solution of the hea t  conduction equation with a periodic boundary  condit ion of the 3rd kind 

we can find the needed parameters  of the conjugated conduction-convection problem, in part icular ,  the value of n. 

For low-frequency the rmohydrau l ic  v ibra t ions  in a long hea ted ,  by internal heat  sources ,  tube,  which were  

considered in [4-6 ], the method of [7,8 ] yields 

n = 1 + 2B (30) 
f ( 1  + f ) "  
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Fig. 2. Extrapolation of the solution of the dispersion relation to a nonlinear 

region: 1) B = 0.I,  2) 0.7, 3) 1.0. 

Here f = ~/1 - b2; B -~ (PwCw~6ww~ 2. 

Thus, the limit of stability of the flow is determined from the amplitude of the fluctuations of the heat 

transfer coefficient b, frequency of fluctuations co 0, mean value of the heat transfer coefficient ~, and the volume 

heat capacity of the wall (PwCwbw). 
For the considered "linear approximation" (b << 1, f = 1) relation (30) yields 

n = 1 + B .  ( 3 1 )  

Assuming in Eq. (31) that B --0, we arrive at the limiting case, considered in [5, 6], of zero volume heat 
capacity of the wall: 

n =  1; E . = F . = 5 . 5 2 .  

With increase in the parameter B the stability of the flow increases: 

E, -* ~ when  B ~ oo. 

We will assume now that solution (23), (24) obtained in linear approximation can be used also at finite 

values of amplitude b ("nonlinear approximation"). Then, relation (30) describes increase in the flow stability with 

increase in b: 

E,--,~o when b-~ 1 ( n - - , ~ ) .  (32) 

Relations (30), (32) make it possible to suggest the following scenario of the development of self-oscillations 

for unstable processes of heat exchange with periodic intensity: 
a) Linear instability. Small perturbations of parameters introduced into a flow increase exponentially. The 

rate of increase is determined by the quantity 7 and can be calculated from relation (27): 

In d~ 
7 -  l n E  > 0 .  

b) Nonlinear instability. Fluctuating quantities become commensurable with the means: 

u ~ -u ;  v ~-~;  q v = q v ;  b = l .  
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Since, in this case, according to Eq. (32), the flow at b = 1 is absolutely stable, relation (30) determines 
such a value of b. < 1 at which the flow parameters correspond to the limit of stability (7 = O; �9 = 1). 

c) Stable nonlinear self-oscillations When b > b,, the flow has the "stability margin." The amplitudes of 
the fluctuations of parameters in accordance with Eq. (27) decay exponentially: 

In 
7 = l n E  < 0  , 

so that at b = b. the flow again arrives at the limit of stability. When b < b., the flow has a "deficit of stability." 

Then, an increase in perturbations again brings the flow to the limit of stability, b = b,. The computational de- 

pendences of the parameter n -- (1 - Z ) - l  on the amplitude of the fluctuations of the heat transfer coefficient b are 

presented in Fig. 2. At a fixed value of b the curves with a larger value of the parameter B correspond to larger 

values of the flow expansion parameter E. At a fixed value of the parameter B and with increase in the amplitude 

b the parameter n increases, and this again means an increase in the flow stability. As seen from Fig. 2, the functions 

n(b) have a distinct "boundary-layer" character: a sharp increase in the stability occurs in the region with b --- 1. 

The proposed model of a self-oscillatory process of heat exchange with periodic intensity can be used to 

calculate the limit of stability with respect to perturbations of the type of "density wave" with account taken of 

thermal conjugation with a wall. 

The work was carried out with support from the Russian Fund for Fundamental Research, grant No. 

98-02-17812. 

N O T A T I O N  

t, time; z, longitudinal coordinate; p, heat carrier density; h, specific enthalpy of the heat carrier; u, velocity 
of the heat carrier; v, specific volume of the heat carrier; a, heat transfer coefficient; b, amplitude of the fluctuations 

of the heat transfer coeffcient; qv, density of heat sources; Ap, pressure losses on a restrictor; k, coefficient of 

hydraulic drag of a restrictor; Au, amplitude of velocity fluctuations; A v, amplitude of specific volume fluctuations; 

= 7 + ifl, complex frequency of fluctuations; Z, coefficient of conjugation; to o --- aqv, scale of frequency; 7 -  mot, 

dimensionless time; y, dimensionless longitudinal coordinate; E, parameter of the expansion of the heat carrier 

between the inlet and outlet constrictors; K, parameter of pressure drops on the inlet and outlet restrictors; Pw, 

density of the material of the wall; c w, specific heat of the wall; 6 w, thickness of the wall. The bar above denotes 

the value averaged for the period of fluctuations; the stroke denotes a pulsating value. Subscripts: 1, inlet to the 

channel; 2, outlet from the channel; w, wall; *, limit of stability. 
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